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4.1: First Order Systems and Applications

Example 1.
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Consider the system of two masses and two springs shown ahove left, with an
external force f(¢) acting on the right mass ms. Applying Newton’s law of
motion to the two “free body diagrams” shown top right, we obtain the sys-
tem

mz" = Rk + koly — z)
may” = —ka(y — ) + [(1).

If, for instance, my = 2,ms = 1,k; =4 and S(t) = 40sin 3( then we arrive

at
27" = —61 + 2y
y' = 2z — 2y + 40sin 3¢.
Example 2.
Fn:E;l wa,:r Consider two brine tanks (shown left). Tank 1

contains x(¢) pounds of salt in 100 gal of brine
and tank 2 contains y(¢) pounds of salt in 200
gal of brine. Everything is kept uniform by stir-
ring as tank 1 receives 20 gal/min of fresh water
and tank 2 flows out at 20 gal/min. Comput-
ing the rate of change of salt in each tank, we
arrive at

10 pal/min
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In this section we wish to only consider first-order systemns. In order to do
this, we will change higher-order systems into first-order systems.

Example 3. Rewrite the third-order sysiem
z® + 30" + 21" — 5z = sin 2
as an equivalent first-order system of equations.
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Example 4. Rewrite the second-order system

21" = —6x + 2y
y" =2z — 2y + 40sin 3¢

as an equivalent first-order system of equations.
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Example 5. Solve the two-dimensional system
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6. Find the general solution of the sysiem
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Example 7. Solve the initial value problem

-TI ==y,
¥ = (L.01)z — (0.2)y,
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Theorem 1. (Existence and Uniqueness for Linear Systems) So X= "e 5.‘,1‘(_‘
Suppose that the functions py1,pie, ..., Pnn and the functions fy,..., f, are ,

continuous on the open interval I containing a. Then, given the n numbers Y__ o ( m( Om'f ~}
by, ..., b,, the linear system has a unique solution on the entire interval I that

satisfics the n initial conditions
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Homework. 1-7, 17-25 (odd)



